

Photoinduced Electron-transfer Reaction of 7,8-Disilabicyclo[2.2.2]octa-2,5-dienes

Masahiro Kako,* Kaname Hatakenaka, Seiji Kakuma, Masumi Ninomiya, Yasuhiro Nakadaira,*
Masanori Yasui,† Fujiko Iwasaki,† Masanobu Wakasa,†† and Hisaharu Hayashi††

Department of Chemistry and †Department of Applied Physics and Chemistry,

The University of Electro-Communications, Chofu, Tokyo 182, Japan

†Molecular Photochemistry Laboratory, The Institute of Physical and Chemical Research (RIKEN),

Wako, Saitama 351-01, Japan

Received 6 August 1998; accepted 27 November 1998

Abstract: 9,10-Dicyanoanth racene-sensitized irradiation of 7,8-disilabicyclo[2.2.2]octa-2,5-dienes1-3 in the presence of MeOH resulted in the formation of dimethoxydisilanes and the corresponding aromatic compounds. A stepwise mechanism involving C-Si bond cleavage by MeOH is proposed. © 1999 Elsevier Science Ltd. All rights reserved.

Electron-transfer chemistry of group 14 organometallic compounds has been attracting considerable interest from the mechanistic and synthetic viewpoints. Recently, the well-known disilene precursor 1-phenyl-7,8-disilabicyclo[2.2.2]octa-2,5-diene 1 has been revealed to have remarkable electron donor properties which are readily ascribable to efficient σ - π conjugation between the Si-C σ bonds and the C-C π bonds. Thus, one-electron oxidation of 1 resulted in the quantitative formation of biphenyl by facile cycloreversion, but the fate of the disilanylene unit eliminated has remains unclarified. We now report the electron-transfer reaction of compounds 1-3 in the presence of nucleophiles to disclose the cycloreversion mechanism.

Irradiation of a solution of 1 (1.3 x 10⁻² M) and 9, 10-dicyanoanthracene (DCA, 1.3 x 10⁻³ M) in a mixed solvent of CH₂Cl₂ and MeOH (4/1) with two 500 W tungsten-halogen lamps led to formation of MeOMe₂SiSiMe₂OMe (4) and biphenyl. The photolysis of compounds 2 and 3 under similar conditions gave the corresponding dimethoxydisilanes 4 and 5, respectively, together with anthracene. Interestingly, in the case of 3, a dimer 6³⁾ was also formed along with 5, and the molecular structure of 6 was determined unequivocally by X-ray crystal analysis (Figure 1).⁴⁾ Photolysis of 6 also afforded 5 and anthracene. On the other hand, when 1-3 were irradiated with 2,4,6-triphenylpyrylium tetrafluoroborate (TPP+BF₄) as a sensitizer,⁵⁾ difluorodisilanes 10 and 11 were obtained together with the corresponding arenes as indicated in Table 1, but no dimeric product was detected in these cases. Similarly, the photo-induced fluorinative cleavage

3: R = Pr

4: R = Me, X = OMe 5: R = ⁱPr, X = OMe 10: R = Me, X = F 11: R = ⁱPr, X = F did not proceed without light, and was inhibited by addition of 1,4-diazabicyclo[2.2.2]octane (DABCO). Furthermore, the ΔG values estimated by the Rehm-Weller equation⁶⁾ are indicative of exothermic electron-transfer from 1-3 to the excited singlet state of TPP*BF₄, and the fluorescence of the pyrylium salt is efficiently quenched with 1-3. Thus, the fluorinative cycloreversion should proceed also through the corresponding radical cations 1^{+*} - 3^{+*} formed by the initial electron-transfer to the excited singlet state of the sensitizer, TPP*BF₄. As expected, the fluorinative cleavage took place on irradiation in the presence of Bu₄N*BF₄ using DCA as a sensitizer. ^{1,7)}

Table 1. Photolysis of 1-3 in the presence of electron acceptors

Substrate	Condition	Products and Yields(%)	_
1	hv/DCA/CH2Cl2/MeOH	4(70), biphenyl(100)	
2	hv/DCA/CH2Cl2/MeOH	4(35), anthracene(80)	
3	hv/DCA/CH ₂ Cl ₂ /MeOH	5(55), 6(16), anthracene(55)	> = ⟨ 5 2⟩ = ⟨
1	hv/TPPBF ₄ /CH ₂ Cl ₂	10(62), biphenyl(100)	R—(4)—(1)—F
2	hv/TPPBF ₄ /CH ₂ Cl ₂	10(39), anthracene(90)	}= <6 ₃ }= <
3	hv/TPPBF ₄ /CH ₂ Cl ₂	11(21), anthracene(70)	
1	hv/DCA/Bu ₄ NBF ₄ /CH ₂ Cl ₂	10(50), biphenyl(89)	
2	hv/DCA/Bu ₄ NBF ₄ /CH ₂ Cl ₂	10(25), anthracene(42)	6 : $R = Si^{\dagger}Pr_2Si^{\dagger}Pr_2OMe$
3	hv/DCA/Bu ₄ NBF ₄ /CH ₂ Cl ₂	1 1(20), anthracene(53)	

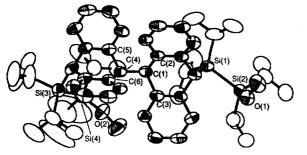


Figure 1. ORTEP Drawing of 6.

H C(4) C(6)

Representation of 6 by Newman projection.

1** would be expected to undergo facile cycloreversion to afford initially the disilene radical cation [Me₂SiSiMe₂]** (path a in Scheme 1), but this is not likely because [Me₂SiSiMe₂]** would not afford 4 but rather MeOMe₂SiSiMe₂H in the presence of MeOH. ⁸⁾ On the basis of well-recognized nucleophilic assistance to the cleavage of Si-Si and Si-C σ bonds of the organosilane radical cations, ⁹⁾ 1** is regarded to undergo facile C-Si bond cleavage by addition of the nucleophile MeOH to afford cyclohexadienyl radical 7 (path b). Three possible pathways are conceivable for the formation of 4 from 7: (i) with elimination of biphenyl, 7¹⁰⁾ collapses to a silyl radical MeOMe₂SiSiMe₂* (8), which is readily oxidized¹¹⁾ and trapped by MeOH to give 4, (ii) after one-electron oxidation of 7, the *ipso*-C-Si bond becomes more susceptible to the nucleophile and this gives 4, and (iii) as in the case of 3, 7 dimerises at first, and then oxidation followed by methanolysis leads to 4. However, for 7, path (iii) may be less likely since 7 would be less persistent than 9 and reluctant to dimerize due to the steric hindrance around the radical center. Meanwhile, DCA-sensitized irradiation of *cis*-10 and *trans*-10¹²⁾ was carried out to obtain streochemical information on the Si-C bond cleavage of 7 and this afforded two diastereomers of *meso*- and *dl*- PhMe(MeO)SiSi(OMe)MePh, stereospecifically. Although the configurations of the diastereomeric pair have not been determined yet, this result shows that the cleavage of the two Si-C bonds should proceed consecutively with either retention-retention or inversion-inversion.

experimental facts should rule out the possibility (i) for the Si-C bond fission. At the same time, intervention of a disilene radical cation should be excluded in view of the nonstereospecific addition of a neutral disilene with alcohol.¹³⁾

Scheme 1.

1 + •
$$\frac{\text{MeOH, -H}^+}{\text{(b)}}$$

MeO-Me₂SiMe₂Si- $\frac{\text{(ii)}}{\text{(iii)}}$

Ph-Ph

Ph-Ph

Ph-Ph

ReO-Me₂SiMe₂Si- $\frac{\text{(iii)}}{\text{(iii)}}$

ReO-Me₂SiMe₂Si- $\frac{\text{(iii)}}{\text{(iiii)}}$

ReO-Me₂SiMe₂Si- $\frac{\text{(iii)}}{\text{(iiii)}}$

ReO-Me₂SiMe₂Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$

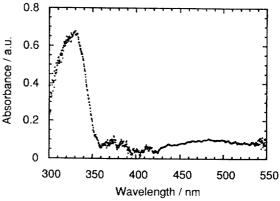
ReO-Me₃SiMe₂Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$

ReO-Me₃SiMe₂Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$

ReO-Me₃SiMe₃Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$

ReO-Me₃SiMe₃Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$

ReO-Me₃SiMe₃Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$


ReO-Me₃SiMe₃Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$

ReO-Me₃SiMe₃Si- $\frac{\text{(iiii)}}{\text{(iiii)}}$

ReO-Me₃SiM

We carried out laser flash photolysis of 1 and DCA in a mixed solvent of CH_3CN/CH_2Cl_2 to observe the electron-transfer process. Nd:YAG laser third harmonic pulse (354 nm, pulse width 5 ns) was used as an exciting light source. An intense transient absorption band was observed at 330 nm¹⁴ (delay time of 10 μ s after laser excitation) along with that of the DCA radical anion (450 ~ 500 nm) as shown in Figure 2. This transient absorption band at 330 nm was not observed in the absence of CH_3CN , but it developed more intensely as the concentration of CH_3CN increased. Neither disilene $Me_2SiSiMe_2$ nor 1^{+6} could be assigned to these absorption bands, which were not quenched by addition of alcohols as common trapping reagents for disilenes⁴⁾ and

organosilane radical cations.⁵⁾ It is suggested that the transient might be some radical species since it was quenched by introducing gaseous oxygen into the sample solution. A similar absorption band was observed when MeOH was used instead of CH₃CN. Based on the observation of facile Si-C bond cleavage of organosilane radical cations by MeOH and CH₃CN, these transient peaks might be resulted from addition of MeOH and CH₃CN to 1+*.

Figure 2. Transient absorption spectrum of **1** with DCA in CH₃CN/CH₂Cl₂ (4:1) at room temperature.

ACKNOWLEDGMENT: This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan. We thank Toshiba Silicone Co. Ltd. for a gift of organosilicon reagents.

REFERENCES AND NOTES

- 1) Kako, M.; Kakuma, S.; Hatakenaka, K.; Nakadaira, Y.; Yasui, M.; Iwasaki, F. *Tetrahedron* 1997, 53, 1265, and references cited therein.
- 2) (a) Nakadaira, Y.; Gomi, Y.; Hosoe, H.; Kyushin, S; Kako, M.; Hatakenaka, K.; Ohashi, M. Bull. Chem. Soc. Jpn. 1993, 66, 344. (b) Kyushin, S.; Ikarugi, M.; Takatsuna, K.; Goto, M.; Matsumoto, H. J. Organomet. Chem. 1996, 510, 121.
- 3) 6: colorless crystals; mp 161~166 °C; ¹H-NMR(CDCl₃) δ 7.44~7.33(m, 6H), 7.14(t, 2H, J=7Hz), 7.00(t, 2H, J=7Hz), 6.98(t, 2H, J=7Hz), 6.58(t, 2H, J=7Hz), 6.42(d, 2H, J=7Hz), 5.30(s, 2H), 4.52(s, 2H), 3.50(s, 6H), 1.40~0.80(m, 56H); ¹³C-NMR(CDCl₃) δ 141.24(s), 140.68(s), 138.79(s), 134.74(s), 130.56(d), 127.21(d), 125.65(d), 125.33(d), 124.89(d), 124.65(d), 123.23(d), 52.18(q) 40.65(d), 20.14(q), 19.71(q), 19.60(q), 19.47(q), 19.04(q), 18.94(q), 18.67(q), 16.57(d), 16.45(d), 15.19(d), 14.72(d); Anal. Calcd for $C_{54}H_{82}O_2Si_4$: C, 74.08; H, 9.44. Found: C, 73.92; H, 9.27. Also in solution, the conformer shown in Figure 1 may be favorable based on the decreased equivalency of signals observed in the ¹³C-NMR spectrum. Variable-temperature ¹H-NMR measurement showed coalescence of methyl and aromatic proton signals, reflecting conformational change of the molecule.
- Crystal data for 6; $C_{54}H_{82}O_{2}Si_{4}$ (fw 875.5), monoclinic $P_{2_{1}}/n$; a=33.834(4) Å; b=14.759(2) Å; c=10.546(1) Å; $\beta=91.786(8)^{\circ}$, V=5264(2) Å³; Z=4. Data were collected with Cu K α radiation (graphite monochrometer $\lambda=1.54184$ Å) on a Rigaku AFC-4 diffractometer. A total of 9825 reflections within 20 = 130° by the 20 ω scan method with a scan rate of 47min. The final R factor was 0.084 ($R_{w}=0.126$) for 5351 reflections of Fo> 3 σ (Fo). Atomic coordinates, bond lengths and thermal parameters were deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No.1.
- 5) Miranda, M. A.; García, H. Chem. Rev. 1994, 94, 1063.
- 6) Rehm, D.; Weller, A. Isr. J. Chem., 1970, 8, 259.
- 7) Becker, J. Y.; Shakkour, E.; West, R. Tetrahedron Lett. 1992, 33, 5633.
- 8) Raabe, G.; Michl, J. in "The Chemistry of Organosilicon Compounds" Patai, S.; Rappoport, Z., Eds.; Wiley, New York 1989, Chapter 17, p. 1015.
- (a) Nakadaira, Y.; Sekiguchi, A.; Funada, Y.; Sakurai, H. Chem. Lett. 1991, 327. (b) Nakadaira, Y.;
 Otani, S.; Kyushin, S.; Ohashi, M.; Sakurai, H.; Funada, Y.; Sakamoto, K.; Sekiguchi, A. ibid. 1991, 601. (c) Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R.; Mattes, S. L.; Todd, W. P. J. Am. Chem. Soc. 1989, 111, 8973. (d) Todd, W. P.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R. Tetrahedron Lett. 1993, 34, 2863. (e) Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R.; Todd, W. P. Mol. Cryst. Liq. Cryst. 1991, 194, 151. (f) Dockery, K. P.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R. Todd, W. P. J. Am. Chem. Soc. 1997, 119, 1876.
- 10) Probably, 7 is formed as a protonated form, which may be transformed to 4.
- 11) Chatgilialoglu, C. Chem. Rev. 1995, 95, 1229.
- 12) Sakurai, H.; Nakadaira, Y.; Kobayashi, T. J. Am. Chem. Soc. 1979, 101, 487.
- 13) Addition of neutral disilenes with alcohols has been reported to be nonstereospecific at higher concentration of alcohol. Sekiguchi, A.; Maruki, I.; Sakurai, A. J. Am. Chem. Soc. 1993, 115, 11460.
- 14) Decay kinetics could not be determined since neither first- nor second- order kinetics fitted the decay curve.